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Various flow processes resulting from the breaking of ocean surface waves are 
examined in order to determine their relative efficiencies as sources of sound. 
Momentum fluctuation arising from splashing water sprays is identified as the major 
contributor to the underwater sound. It is shown that the splashing is more efficient 
in radiating sound than other processes, such as unsteady foaming that entrains air 
bubbles into water, and turbulent motions in the surface layer associated with 
compressibility of the entrained bubbles. A model is presented to estimate the sound 
power radiated in terms of parameters of the wind and surface wave field. Comparison 
of theory with measurements is made and good agreement is discovered. 

1. Introduction 
This paper examines the problem of sound generation in the ocean by fluid motions 

adjacent to the air-water interface, with particular reference to those resulting from 
the breaking of surface waves. Because of the complicated conditions in the real ocean 
it has long been suggested that a wide range of physical mechanisms are jointly 
responsible for the oceanic noise (see, e.g. Knudsen, Alford & Emling 1948; Wenz 
1962). But it has also long been recognized that the underwater sound is somehow 
related to the violent motion of the ocean surface. In this paper we show that this 
relation is through the wave-breaking process ; more specifically, through the 
splashing of water sprays in the breaking. As wind blows over the ocean surface, 
waves may break; water sprays are detached from surface waves into the turbulent 
airflow, and later fa11 down on to the water surface again to form patches of foam 
and entrain air bubbles into water. All these processes, as well as various motions 
of the entrained bubbles, can generate sound in one way or another. We will show, 
however, that it is the splashing of water sprays, which have a much heavier mean 
density than their surroundings and hence cause a rapid variation of momentum in 
the source flow, that is the major contributor to noise in deep water. 

This sound generation by momentum variation is actually within the category of 
sound production by mixed turbulent flow in aeroacoustics. Ffowcs Williams (1986) 
has shown that, whenever mixed turbulent motions occur near a density interface, 
the dominant sound arises from momentum fluctuation due to the rapid density 
variation in the source flow. This principle can be used to interpret the generation 
process of underwater sound in the presence of waves breaking on the ocean surface. 
Since there are some differences between our ocean sound problem and that 
considered by Ffowcs Williams - the change in sound speed across the density 
interface and the entrainment of air bubbles, for example - we will derive the theory 
in a different way to take account of all these effects. Our theory is expressed in such 
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a way that the oceanic sound is identified as being generated by two distinct 
mechanisms: the unsteady momentum flux at  the ocean surface, and the effects of 
bubble-induced compressibility of the source flow. 

In fact, our result for the momentum-induced sound is essentially the Ffowcs 
Williams theory, except for a slightly different proportionality constant that 
completely accounts for the effect of change in sound speed across the air-water 
interface and is precisely equal to the transmission coefficient of a plane interface for 
sound waves propagating from air into water. This sound, of dipole type in general, 
is shown to be the dominant sound produced by breaking waves. We will demonstrate 
that the breaking of waves is crucially important and that the dipole sources 
degenerate to relatively ineffective quadrupoles when there is no wave breaking. 

Bubbles in a turbulent flow are known to generate sound by volumetrically 
responding to the fluctuating turbulent pressure and by inducing momentum defects 
in the source flow. Both these mechanisms are very efficient acoustic sources in certain 
situations and one would naturally expect them to feature in the surface-wave 
sound-generation problem. But to our surprise our studies have led us to the view 
that bubble motions are actually irrelevant to this problem. We will show that their 
sound is essentially of smaller order than that from water sprays. This is because the 
bubbles are all located near a density interface that is almost pressure-release; the 
monopoles interfere destructively with their images. 

Having identified splashing water sprays as the dominant acoustic source, we 
finally apply the theory to predict the sound power from this mechanism in a, model 
of the real ocean. Owing to the recent progress in understanding the relation between 
statistical properties of breaking waves and winds (Phillips 1985), we are able to 
estimate the sound power radiated by splashing sprays in terms of the wind speed 
and the minimum phase speed of waves capable of producing sprays. We predict a 
quadratic dependence of the overall sound power on wind speed, which is well 
consistent with observations in the natural ocean. The extensive existing measure- 
ments of underwater sound suggest that the sound-pressure spectra have different 
wind-speed dependencies at different frequencies (e.g. Perrone 1969; Morris 1978). 
For decreasing frequencies, a decreasing degree of dependence of deep ocean noise 
spectra on wind has been observed. In general the relation can be described as a power 
law with index scattered in the range 1.5-3.6. But when the pressure spectra are used 
to evaluate the overall sound power, the power output is found to follow our 
quadratic-dependence theory very well. Our model predicts that in a storm of typical 
wind 15 m/s, the peak frequency of the surface-generated sound is about 500 Hz, a 
value consistent with observation in the ocean (Wenz 1962), though a quantitative 
detailed verification is almost impossible because the measured sound cannot be 
distinguished as coming exclusively from sprays. 

2. The development of the theory 
We consider a configuration in which the air and water are separated by an infinite 

interface. Sound is generated by sources in the proximity of this interface, such as 
turbulent motions of the bubbly flow and the splashing water sprays from breaking 
waves. Far from the source layer the fluids are at rest apart from sound waves from 
the sources. We choose two horizontal control surfaces x3 = 0 and x3 = A ,  x3 being 
the vertical coo;dinate with an upward positive direction, to separate the mixed 
turbulence sources from the only acoustically disturbed water and air. Sources are 
then all confined to the region 0 < x3 < A (see figure 1). The motion in the region 
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x Sound to deep water 

FIQURE 1. The geometry of the problem. Sound is generated by flow processes 
on the sea surface. 

below x3 = 0 can therefore be specified by the ordinary homogeneous wave equation 
in terms of sound-pressure fluctuation p ( x ,  t ) ,  namely, 

in x3 < 0, c, denoting the constant sound speed in water. We take Fourier 
transformations in the horizontal coordinates xa and time t so that (2.1) implies that 

where y$ = d / c $ - k t  and the symbol means that the quantity indicated is in 
the wavenumber-frequency space. This equation can be solved directly. The result 
can be expressed in terms of pressure fluctuations on the control surface x3 = 0. 
Taking account of the radiation condition at x3 +. - 00, we must have as the solution 
of (2.2) 

with the branches of y, chosen such that when real they have the same sign as w 
and then purely imaginary Im (yw) is always positive. This choice guarantees that 
sound waves are outgoing and finite at x3+--oo. From the solution (2.3) and by 
making use of the vertical component of the linearized momentum equation 
pwau3/at+applax3 = 0, pw being the mean density of water and u3 the vertical 
velocity, it is easy to show that - 

$(O)  = - (2.4) 
Yw 

where 4, denotes the Fourier transform of u3. Thus (2.3) can be alternatively 
written as - 

fi(x3) = - e-i~w 2 9 .  (2.5) 
Y w  

The foregoing procedure is equally applicable to the region x3 2 A where the only 
motion consists of sound waves which are governed by (2.1) with c,  replaced by ca, 
the constant atmospheric sound speed. Corresponding to (2.4) we find that on z3 = A 
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where pa is the mean aerial density and yi = w2//c:- k:, the branches of which are 
chosen similarly to those of yw to  ensure the radiation condition at x3++ co. By 
rearranging (2.6), (2.5) and (2.3), and appropriately combining them, it can be 
deduced that 

and 

The subtraction of these two relations immediately yields 

Since 

and 

(2.7) is equivalent to  

Now the inverse Fourier transformation can be used to find the sound pressure in 
the region x3 < 0, that is, 

op, au3Cy7 7 )  apdy, 7 )  

x ei[k,(y,--z,)+w(r--)-Yw531 d3y d2k, d7 dw, (2.8) 
where $ and 4, have also been expressed in terms of their Fourier transforms in the 
physical space. 

The y-integral in (2.8) is to be performed over the source region 0 < y3 < A,  in 
which the motions of fluids are highly nonlinear, so that the complete set of equations 
of fluid motions must be used. These are, if viscosity and heat conductivity are 
ignored, 

where c, is the sound speed in the turbulence mixture, which may differ from both 
ca and cw because of the presence of air bubbles. From these equations we derive the 
identity 

Ya 

so that (2.8) becomes 

Since we are mainly concerned with sound in the deep water, the method of 
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two-dimensional stationary phase (Jones 1982) can be applied directly to the 
k,-integration. The result can then be simplified still further by carrying out the 
w-integral with a result containing a &function and then utilizing it to evaluate 
the integration with respect to T .  This leads to 

where C O S ~  = x3/lxl and we have denoted by V, the turbulence source region. The 
bracket [ ] has what is by now the conventional retarded-time implication. T(B) 
represents the transmission coefficient of a plane air-water interface for sound waves 
propagating from air into water, and is defined by 

The solution (2.10), derived from the complete set of equations of fluid motion, is 
an exact representation of the far-field sound. It can be simplified once i t  is recognized 
that the term containing auJay, in the integrand is actually negligible. To demon- 
strate this, we derive the relation, through the use of the retarded-time implication 
and the set of equations (2.9), 

(2.11) 

where 

is negligible. The first two terms are in divergence form so that they both integrate 
to zero because the bounding surfaces of V, are linear and u, vanishes at Igal + co. 
The third term is evidently a quadrupole field; it is smaller than the leading term 
in (2.11) by M = u/c, 4 1, u being the typical turbulence velocity. In considering 
the last term, we scale the pressure perturbation in the source region as pw uU, U 
denoting the typical mean flow velocity, the uniform wind speed for example. Thus 
the ratio of this term to the leading term in (2.11) is of the order uU/c&. Now c, 
may be much lower than both c, and c, (owing to the presence of air bubbles in the 
flow) and may be of the same order as U ,  but it can never drop below u. In fact, c, 
is at least one order of magnitude bigger than u ;  uU/c& is then much smaller than 
one. This completes the proof that 8 is negligible. When (2.11) is substituted into 
(2.10), i t  becomes clear that the term containing au,/ay, is exceedingly small. Ffowcs 
Williams (1986) has given a general proof that i t  is the divergence property that 
makes its integrated effect vanish. In fact, it  is even more straightforward in our 
ocean-sound problem to show this by a direct comparison of the integrands. 
Considering (2.11), it follows that the first term and the term proportional to i3uU/ay, 
in (2.10) can respectively be scaled as 

Du3 Pa ca Dua p- and -- 
DT c, D T '  

On the ocean surface it is the momentum excess of flow elements with distinctly 
different mean density from their surroundings that generates sound (as will be seen 
in the foIlowing sections). Therefore the density p should be scaled on p,, the mean 
water density, and hence the first term is obviously of the order pwcw/paca x lo4 
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larger than the second. Thus the term proportional to aua/aya can be neglected and 
we eventually have 

where we have split the density of a fluid particle at x into its mean value p,(x), plus 
the small deviation p'(x, t )  due to compressibility; p(x. t )  = po(x)  +p'(x,  t ) .  

This solution is consistent with the Ffowcs Williams (1986) theory. In his problem 
of aeroacoustics, bubbles are not considered, so that c, in (2.12) should be replaced 
by either c, or c,. The term inversely proportional to ck is then clearly much smaller 
than the first term, smaller at least by the factor (pa/pw)(U/ca). If we further let 
ca = c,, Ffowcs Williams' equation (4.24) is precisely recovered. The change caused 
by allowing the difference in sound speed across the air-water interface is all confined 
to the transmission coefficient T(6) .  Since bubbles are commonly observed in the 
ocean surface layer (Wenz 1962), it  is obviously of interest to see whether they can 
produce an appreciable sound field. Hence we have retained the term inversely 
proportional to ck. 

Now, the two source mechanisms are clearly revealed. The first is similar to that 
discussed by Ffowcs Williams in the sound production by mixed jet flow, that is, the 
unsteady momentum fluctuation in the source flow. The sound of this source, given 
by the first term of (2.12), is in general of dipole type, the axes of the dipole sources 
being perpendicular to the mean position of the air-water interface, and bigger in 
magnitude than that from the non-mixed turbulence. The second kind of source is 
accounted for by the second and last terms, and is associated with compressible 
motions in the source region. In  the ocean-sound problem, compressible motions in 
the surface layer mainly result from air bubbles, their volumetric response to 
turbulent pressure fluctuation for example. Thus this mechanism may be important 
only in the bubbly mixture, where the fluids can possibly be compressed in such a 
way as to significantly influence the sound production. 

3. The dominant source of sound during the breaking 
When surface waves are breaking, clouds of water sprays are thrown up into the 

airflow. The splashing water sprays are highly sporadic and sparse. Within a spray 
the mean density is very high, scaling on the mean water density p,, while outside 
it is pa. The density and hence the momentum distribution in the source region is 
then sharply discontinuous in space and time. In this case, we identify the sound from 
unsteady momentum fluctuation as the dominant sound. This becomes evident if we 
compare the relative magnitude of the three terms in (2.12). On scaling p as pwuU 
and therefore p' as p, uU/ck by definition, the ratios of the first to the second and 
the third terms are, respectively, 

The first ratio is very much bigger than one, because c, is always much bigger than 
u even a t  its minimum value, which is of the same order as U ,  while the second is 
a t  least of the same order as the inverse of the wind Mach number U/ca. Hence the 
dominance of the first term in (2.12), that is, sources connected with momentum flux 
on the ocean surface, is established; compressible motions of the bubbles cannot be 
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FIGURE 2. A continuous bubbly layer under the airflow. 

important sources of sound. In  fact, momentum defects due to the presence of bubble 
clouds in water are also negligible in comparison with that from splashing water 
sprays, so that the effects of the bubbles can be completely ignored as far as sound 
generation is concerned. We will show in the next section exactly why the bubbles 
are weak acoustic sources in our ocean-sound problem, but demonstrate first in what 
follows the crucial importance to the momentum-induced sound of the discontinuous 
variation in po, the density which the source flow would have in an exactly 
incompressible flow. We show that the momentum-induced sound degrades to higher 
order and smaller magnitude if there are no breaking waves on the ocean surface even 
when the surface is non-linearly disturbed. 

To this end, we consider a bubbly turbulence layer of mean thickness E and 
horizontally extensive and continuous. Hence po varies abruptly only across the 
interfaces between the layer and the surround-ing fluids, airflow above and pure water 
below. We express the bubble concentration /I, the fraction of unit volume of the 
mixture which is occupied by the bubbles, as Po supplemented by a fluctuating part 
/3’ that accounts for motions of the bubbles associated with compressibility. Here Po 
is the concentration that would be caused by the bubbles if they were all rigid. Po 
is presumed homogeneous and constant (much less than one) inside the bubbly layer. 
Hence the interfaces between the layer and its surrounding fluids are modelled as 
discontinuities in Po, Po being equal to one in the airflow, a small constant in the 
bubbly layer, and zero in the pure water. The density within the bubbly layer can 
be approximated by Ppa + (1 -B)  pw (the neglected terms being of the order C ~ / C ;  

smaller), or equivalently 

P = PoPa+ (1-Po)~w+(pa-~w)B’, (3.2) 

(3.3) 

in the source region V,, where H denotes the Heaviside unit function and ys = E + 5 
is the upper bounding surface of the bubbly layer. In deriving (3.3) we have taken 
the lower bounding surface of the layer as the linear control surface y3 = 0 as shown 
in figure 2. This is legitimate because motions on this surface are very small in 
comparison with those on y3 = E + C ,  which models the ocean surface, due to the 
exponentially decaying property of ocean waves. The deformation 6 of the interface 
between the bubbly layer and the airflow should be in general determined by the 
combination of gravity waves and waveguide effects arising from multiple reflections 
of waves in the bubbly layer that has a sound speed much lower than those on either 

from which we can deduce the density 

PO = A Pa + ( 1 - P o )  PW + (Pa - ~ w )  (1 - P o )  H(ya - E -  5) 
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side of it. These guided waves, trapped in the layer, may be of high energy level, and 
propagate horizontally just like gravity waves. However, we find in the Appendix 
that the motion of the ocean surface due to waveguide effects is vanishingly small 
in comparison with that due to gravity waves. Hence we can simply regard 5 as the 
ocean-surface displacement due to gravity waves. 

Since any fluid element on a continuous ocean surface will always remain on it, 
the material derivative of the Heaviside function in (3.3) vanishes, so that 
Dp0/D7 = 0 and thus po in the first term of the integrand of (2.12) can be taken inside 
the differential operator. The momentum-induced sound thus becomes 

The second term in the integrand can be further rewritten, by utilizing the retarded 
time implication and (2.9), as 

These terms are all negligible. The first is a divergence ; it integrates to zero because 
u3 ui vanishes on the linear boundary surfaces y3 = 0, y3 = A and I ya1 + 00. The second 
is a quadrupole field of the same order as those already omitted in $2, while the last 
can be easily seen to be not bigger than the second and third term of (2.12), which 
have been demonstrated to be of negligible importance. If we denote by Q all 
quadrupole terms, (3.4) is then equivalent to 

(3.5) 

When (3.3) is inserted into this, the constant part of po yields a sound field that is 
given by the integration of [u3] over a fixed volume bounded by the linear surfaces 
y3 = 0 and y3 = A ,  and is equivalent to the sound that would be radiated by a 
turbulent flow of constant mean density Po pa + (1 -Po) pw x pw adjacent to a linear 
density interface y3 = A .  This sound has been shown by Ffowcs Williams (1986) to 
be a small sound (in the sense that it is not bigger than Q ) .  The sound corresponding 
to the last term of (3.3) would also be equal to such a quadrupole field if the ocean 
surface is only linearly deformed, namely, if 5 in (3.3) is linear and the Heaviside 
function can be replaced by H(y,--s). But here we take a further step to consider 
nonlinear effects of the ocean-surface motion. We suppose that 5 is small but finite 
in magnitude (being small to ensure the continuity of the air-water interface). Hence 
we have, on substituting (3.3) into (3.5), 

The first integral from E to A is actually over a fixed volume so that it is of the same 
order as Q .  The second one can be expanded in a power series of 5. The convergence 
of this expansion is guaranteed by the small slope of the surface displacement. By 
truncating the expansion a t  the term proportional to and denoting u3 by aLJi37, 
we find that 
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It is easy to identify the first term on the right as equation (2.11) of a companion 
paper (Guo 1987) multiplied by (1 -Po)  that is effectively unity. In  that paper we 
have shown that this sound is always negligible in comparison with the direct 
turbulence sound Q as long as the ocean surface remains intact. Acoustic dipole 
sources due to momentum flux degrade to higher-order quadrupoles when there are 
no breaking waves on the ocean surface. This result can be regarded as a generalization 
of the conclusion that a turbulent flow near a linear surface can only radiate 
quadrupole sound (Ffowcs Williams 1965,1986). We have shown that this is also true 
in the ocean-sound problem even when the surface is non-linearly deformed. 

4. Bubble sound 
Bubbles can be very efficient acoustic sources sometimes; they can introduce 

monopoles by volumetricelly responding to the fluctuating turbulence pressure, and 
dipoles by inducing a rapidly varying density and momentum distribution. But in 
our problem of sound generation by surface waves, these two are both irrelevant; 
neither of them can contribute any appreciable sound. We show this in detail in this 
section. Let us first consider the sound produced by compressible motions of the 
bubbles. From (3.2) we see that the fluctuating part of the density p associated with 
compressibility is 

The sound due to compressible motions is given by the second and third terms of 

To calculate this sound, we need to estimate the magnitude of 8'. For a bubbly flow 
embedded in an infinite region of water of uniform mean density, Crighton & Ffowcs 
Williams (1969) have derived an expression for p' which, in the case of forced motions 
of typical frequency much lower than the bubble resonance frequency wo, scales as 

where a is the mean radius of the bubbles, They have also given the detailed 
expression for wo. We will use this scaling law in our problem where the bubbly flow 
is near the ocean surface. It can be justified in two ways. The first is to examine their 
derivations. It can be noticed that their argument leading to (4.3) is actually 
independent of any boundaries in the flow field. Alternatively, it can be checked by 
the use of the simple relation = 3P0c& for Po neither too small nor too close 
to unity (Crighton & Ffowcs Williams), which reduces (4.3) to = -p/ctpw. From 
(4.1) the density fluctuation is approximately -pw/3'. Hence the relation (4.3) is in 
fact equivalent t o p  = ckp', the definition of sound speed in the bubbly liquid which 
is certainly independent of any boundaries in the flow. Either way, we see that (4.3) 
is also valid in our problem. 

The acoustic power output can be calculated from (4.2) by integrating the intensity 
over a large hemisphere. Suppose that the turbulence source region V, extends 
horizontally over an area of dimension L2. The typical eddy size within the region 
is denoted by 1. Thusp - pw uU and a/at - D/D7 can be scaled as a typical frequency 
u/E. The acoustic power can then be estimated in terms of these parameters. A 
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radiation efficiency 7 can be conveniently defined by dividing the power output by 
the rate of working of the fluctuating pressure p against the mean flow U over the 
area L2, that is, pw uu2L2. Corresponding to  the two integrands of (4.2), we find the 
radiation efficiency as 

or (4.5) 

These two can be compared with the radiation efficiency of Q, the sound that would 
be generated by a pure, non-bubbly turbulent flow. This sound can be found by either 
calculating the leading term of Q or applying the Lighthill (1952) acoustic analogy 
to the corresponding geometry. It turns out that, if we symbolically still denote by 
Q the radiation efficiency of the pure turbulence sources, then 

It is now very clear that the effect of compressible motions of the bubbles on sound 
radiation is to modify the inherent turbulence sound by either (c,/c,)~W or 
( C ~ / C , ) * @ @ , C ~ / ~ ~ C ~ ) ~ ,  neither of which can exceed O( 1 )  for the ocean-sound problem. 

Crighton & Ffowcs Williams (1969) have investigated sound production by a 
bubbly flow embedded in an infinite region of water. They conclude that bubble 
motions may induce monopole sources whose power output dramatically overwhelms 
the usual Lighthill quadrupole sound by (C,/C,)~. In view of this our conclusion that 
the influence of bubbles in the ocean surface layer is essentially negligible seems to 
be a startling result. The contrast is entirely due to the presence of the ocean surface. 
It can be illustrated by examining their basic equation (2.3), which reveals that, apart 
from the usual turbulence quadrupoles, bubble motions associated with compressi- 
bility induce a distribution of monopoles. However, as was shown in their paper, these 
monopole sources are actually equivalent to  isotropic quadrupoles, though their 
strength is bigger than that of the Lighthill quadrupoles so that the power output 
is amplified by (C,/C,)~, and hence the radiation efficiency is of the order (c,/c,)~ W. 
In  the case of sound generation by surface waves, all the sources are near a density 
interface that is almost pressure-release. It is well known that sound from isotropic 
quadrupoles adjacent to such an interface will be either reduced by @, c,/p, c , ) ~  or 
degraded to an octopole field, that is, reduced by W. This is precisely what (4.4) and 
(4.5) predict. Since the two reduction factors usually offset the increased value due 
to the multiplying factor (C,/C,)~, the bubble-induced monopoles are not more 
efficient than those inherent turbulence quadrupoles which, though also close to the 
ocean surface, still radiate a sound of efficiency of the order M5 because the density 
interface cannot change the order of sound from quadrupoles with one, and only one, 
axis perpendicular to the mean position of the interface. Therefore when Crighton 
& Ffowcs Williams' equation (2.3) is solved in the boundary problem where the 
sources are located near the ocean surface, the dominant sound is still given by 
the usual Lighthill turbulence sources, and this again leads to the conclusion that 
the effect of the compressible motions of the bubbles can be completely ignored. 

The fact that bubbles near the ocean surface are very weak acoustic sources has 
been experimentally observed (I. Roebuck 1987, private communication) ; the noise 
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of bubbles produced by a ship propeller is mainly generated by those bubbles near 
the propeller, where the interactions between the bubbly flow and the solid propeller 
blades are very strong, while in the wake, which may stretch far downstream of the 
ship and last a long time after the passage of the ship, bubbles can hardly radiate 
any noticeable noise, owing to the fatal destructive interference with their negative 
images from the ocean surface. 

Now we turn to the sound caused by whitecaps. When splashing water sprays fall 
down on to the water surface, they usually form patches of highly bubbly mixture 
on the surface, which are surrounded by relatively clean water. Thus these patches 
of whitecaps cause a momentum flux in the source region, which generates sound in 
the same way as that in which splashing water sprays radiate sound. However, 
unsteady whitecaps can be shown to be much less efficient as acoustic sources than 
water sprays. This is done in what follows. 

For water sprays, we scale the mean density within the clouds of water drops as 
pw and neglect the influence from the surrounding airflow that has a much smaller 
mean density pa. The sound pressure, from (2.12), is then proportional to 

In the case of whitecaps, the high concentration of air bubbles within the whitecaps 
makes the mean density much lower than pw, so that we have 

It can be recognized immediately that the first term on the right-hand side is 
negligible, because the integral is over a fixed volume bounded by linear surfaces (as 
shown in 8 3) .  Since each one of the whitecaps is produced by a falling cloud of water 
drops, the sprays and whitecaps can reasonably be assumed to have a similar 
structure in their timespace distribution. Hence the integrations in (4.6) and (4.7) 
over the source region give a comparable effect to both terms and the relative 
magnitude of the two is entirely determined by the integrands, that is, by the vertical 
acceleration of water sprays and whitecaps. 

The vertical acceleration of water sprays, detached from the main water body, can 
be estimated as g ,  the gravitational acceleration. Turbulence-pressure fluctuation in 
the airflow may also contribute to Du3/Dr,  but it is of the order pauU/lpw, 1 now 
denoting the linear dimension of the water sprays. If we let c be the phase speed of 
surface waves and use the result from Phillips (1985) that I - 0.24c?/g, the turbulence- 
induced acceleration can be shown to be of the order 0 . 0 9 ( u , / ~ ) ~  g ,  u* being the friction 
velocity and assumed to be of the same order as u. This is very much smaller than g ,  
because uJc is much less than one for most energetic large-scale waves that are 
breaking (for the dominant wave in an active field being of the order 0.05). 

The vertical acceleration of whitecaps can be estimated from the surface wave field. 
As shown in the Appendix, the dominant motion of the ocean surface arises from 
gravity waves so that whitecaps, attached on the water surface, are all convected 
by gravity waves. Hence, with u denoting the angular frequency of the dominant 
wave, we can scale Du3/D7 as u2< for whitecaps. Here < can be calculated by 
integrating its frequency spectrum @(w) = agu,/w4 (Phillips 1985), where a is a 
constant in the range from 0.06 to 0.11. From this we find that y - (agu,/3a3)k On 
scaling u as g /U,  it follows that the ratio of (4.7) to (4.6) is (auJ3U)t. The comparison 
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FIQURE 3. The schematic definitions of the cross-section and length of a water spray. 

can also be made in terms of acoustic power output W, which can be easily calculated 
from the pressure field (2.12). It can be deduced that 

Considering that a = 0.06 - 0.11 and u*l U x 0.05, we see that the power ratio of 
the spray-generated sound to the whitecap-generated sound is at least of the order 
lo3; the latter can be neglected. 

5. A model for the calculation of sound power 
From all the arguments in the preceding sections, we can conclude that the 

splashing water sprays are the major generator of underwater sound. Now we present 
a model to estimate the sound power from this mechanism. We establish the relation 
among the radiated sound power, the wind and the surface wave field. From (2.12) 
the sound pressure is 

where 

and V ( t )  denotes the total volume occupied by water sprays above the main surface. 
The production of water sprays by breaking waves is an unsteady process so that 
V ( t )  is a function of time. Approximately, the instantaneous spray-occupied volume 
is equal to the space-averaged cross-section A(t)  of sprays times their total length, 
which is defined as the dimension of the sprays along the wave crests (see figure 3). 
Letting ((y,, t )  represent the length of water sprays in unit surface area, we can then 
write V ( t )  as 

r 

~ ( t )  = ~ ( t )  J ((ya, t )  d2ya* 
Y a  

On substituting (5.3) and (5.2) into (5.1) we find that 

(5.3) 

The acoustic power can be estimated from this by following Lighthill's (1952) idea 
of 'incoherent small eddies'. In doing so we take the ensemble average of the square 
of the pressure (5.4). One of the two y,-integrals in the squared pressure can be carried 
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out explicitly by assuming that the sources are well correlated only with those sources 
that are located within a surface area of small dimension, characterized by the 
coherence length scale 1. Then, integrating the result over a hemisphere far from the 
sources and dividing it by the total area of the source region, it can be shown that 
W, the sound power radiated from unit area of source region, is 

with r, = 2,-y, and the overbar denoting the ensemble average. 
Here the quantity aAf;/at is essentially the variation of the spray-occupied volume. 

It is mainly determined by those surface waves that are breaking. The lack of our 
knowledge of these highly sporadic and sparse breaking waves (their space-time 
distribution, say) causes difficulty in estimating the sound. Nevertheless, Phillips 
(1985) suggested that in dealing with statistical characteristics of breaking waves it 
is relatively satisfactory to use the phase speed c as a measure of the scale of the 
breaking events. We adopt Phillips’ scheme to estimate the magnitude of aAf;/at. This 
procedure starts with defining a distribution, B(c) say, in the wave-speed space such 
that B(c)dc represents the contribution to aAf;/at from those waves that have 
velocities in the range c to c+dc. The total contribution can then be found by 
integrating B(c)dc over all possible velocities. This is similar to the idea of ‘linear 
summation’, which seems to take no account of the nonlinear interactions among 
waves of different velocities. It is legitimate, however, for our purpose. Our concern 
here is the properties of the sprays from breaking waves, not the nonlinear waves 
themselves. In a fully nonlinear surface wave field, the wavelength and frequency 
of a breaking wave cannot be specified in any unambiguous way, but its phase 
velocity is a well-defined quantity. Hence any water sprays in the source region can 
always be related to the definite velocity of the wave that produced them. Provided 
we ignore the back influence of the sprays on their origin, the main surface wave field, 
the aggregate effects on the spray production of the whole wave field can then be 
accounted for by the integration of the contribution from all the individual waves. 
This is the viewpoint that regards the fully nonlinear motions in the main wave field 
as independent of the sprays that have already been produced and are related to the 
wave field only through the phase velocity of the waves which created them. 

In this view, for a spray-generating surface wave of speed c, we have from Phillips 
(1985) that the distribution of length per unit area of breaking front per velocity 
element is f ;  = b, u: g/cs, where b, is a constant of the order 0.01. And at this velocity 
we also have A = b, c4/g2 and a/at = b3 g/c with b, z 0.06 and b3 of order one. Thus 
it can be deduced that 

from which it is found that 

where co is the minimum phase speed of surface waves capable of producing water 
sprays and n is the expected number of breaking crests passing a given point in unit 
time, which is given by Phillips (1985) as 
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This result can be used to reveal the frequency character of the spray-generated 
noise. If we assume that each one of the breaking crests produces a water spray 
containing approximately lo2 water drops, the number of water drops passing a fixed 
point in unit time is roughly n x lo2. This is a typical frequency of the source process 
and also the frequency character of the sound generated by this source. The quantity 
n can be estimated by regarding c,, as being of the same order as but somewhat bigger 
than the minimum phase speed of waves in the saturation range, which is given by 
(ligT/p,)f, T being the surface tension (Phillips 1977). Surface waves of phase speed 
lower than this value are decaying; they cannot break. Hence the typical frequency 
of the sound radiated can be estimated as 

This is basically a function of the uniform wind speed U ;  for U varying from its 
threshold value for breaking, of about 5 m/s, to the extreme high wind of 30 m/s, 
the typical frequency ranges from 20 Hz to 3750 Hz. For instance, in a storm of 
typical wind speed of 15 m/s, the peak frequency is approximately 500 Hz. Due to 
complex situations in the real ocean, i t  is impossible to distinguish the spray-induced 
sound from the actual measurements in any unambiguous way, so that the predicted 
frequency character cannot be checked quantitatively. Nevertheless, some observa- 
tions and analyses do support this prediction (e.g. Wenz 1962) ; spray-generated noise 
in the ocean is found very likely to be peaked at  these predicted frequencies. 

On substituting (5.6) into (5.5) and scaling d2ra as l2 we find 

From the definitions of 1 and n it is apparent that their product is the velocity with 
which the water sprays move (the distance travelled by a spray in unit time being 
equal to both the velocity and In). The velocity of water sprays can be scaled on 
the wind speed because sprays can intuitively be regarded as being blown away from 
surface waves by wind. On this account we write In = b, U ,  b, being of order one, and 
the sound power output becomes 

where we have combined all proportionality coefficients as a single constant p,  that 
isp = bi bi b:. Taking account of the definitions of all these coefficients we may specify 
p in the range 0.01 < ,u < 1.0. 

The result (5.7) is our theoretical prediction of the sound generated by water sprays. 
It shows a quadratic dependence of the overall sound power on wind speed and relates 
the sound to the surface wave field through the minimum phase speed of waves 
capable of producing sprays. Since sound in the natural ocean is usually measured, 
and reported in the literature, in terms of the power spectrum P( f ), the integration 
of which with respect to frequency f yields the mean square pressure, it is necessary 
to develop a model to convert the measured spectra into sound power in order to 
compare our theory with the measured data. 

We choose to work with an ‘infinitely deep ocean’ model. This assumption is 
apparently reasonable since the wavelength of the sound concerned is very much 
smaller than the ocean depth where the measurements are made, and the reflection 
of the sea bottom in this situation is very poor. On this account, the sound field far 
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FIQURE 4. Sound power per unit frequency from unit area of source region. The dashed curves are 
the maximum and minimum values of the theory (5.7) and the measurements are respectively taken 
from Perrone (1969), Morris (1978) and Knudsen et al. (1948). 

away from the source region is all outgoing, and the energy flux in the radial direction 
can be written as 

where cos8 = x,/Ix( and I7 is the total sound power. The last step of this relation 
can be verified by integrating it over a hemisphere of radius 1x1. Now we define W' 
as the sound power radiated from unit area of source region. The sound power 
radiated by sources in the surface area 6s is then given by 6l7 = Was.  On the other 
hand, we have from (5.8) 

which then leads to 

This is the relation between the radial energy flux in the far field and the source 
element 6s. If we further assume that the sources are energetically unrelated, namely 
that the contributions to I, from disjoint surface elements are incoherent, we can 
replace the variational symbol 6 by the differential symbol d and integrate this 
relation over the whole source region to derive the total contribution from all surface 
elements. Denoting by h the depth of the observation point and using the polar 
coordinates ( T ,  $) in the horizontal plane, we can write cos8 = -h/lxl and 
1xI2 = r2+h2. For a large patch of random source distribution of dimension L, the 
sound power per unit surface area W' can be supposed to be uniform over the source 
region T < L and vanishing outside it. Hence we have by integrating (5.9) 

L2 
rdrd$ = gW ~ 

2 - 32T Jo2" JoL h2 
Pw cw ( r2 + h2)2 L2+h2' 

(5.10) 
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By expressing the 
sound power from 
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mean square pressure in terms of the power spectrum P(f), the 
unit area of source region is found to be 

(5.11) 

Since the dimension L of the source region is usually much bigger than the depth 
of the observation point, the second term in the bracket can be neglected, and (5.11) 
simplifies to 

(5.12) 

We compare our theoretical prediction (5.7) with this equation. The results are 
shown in figure 4, where the overall sound power level (sound energy per unit area 
of source region per unit time in decibels) is depicted as a function of the wind speed. 
Considering the somewhat arbitrary choice of the constant p in (5.7) within the 
specified range, we illustrate our theory by plotting the maximum and minimum 
values of the predictions (the dashed curves). The comparison is made with three sets 
of experimental data, two of which, from Perrone (1969) and Morris (1978), 
respectively indicated by triangles and squares, are calculated from (5.12) according 
to the originally reported spectral data. The other set (circles) is taken from Knudsen 
et al. (1948), who gave the measurements in terms of the mean square pressure so 
that (5.10) is used in this case to evaluate W'. Apparently the measurements can all 
be fitted by choosing suitable values of p. This indicates that the overall sound power 
in the ocean can very satisfactorily be described by the quadratic dependence theory, 
though the pressure spectra themselves have been observed to vary with wind speed 
as PS to iY.6 at different frequencies. Figure 4 also shows that the predictions are 
too poor at low wind speed (below 10 knots). The sound is then dominantly generated 
by the turbulent airflow ; there are no breaking waves. 

6. Conclusions 
Sound generation by breaking waves on the ocean surface has been examined. The 

splashing water sprays from the breaking have been identified as the main cause of 
the underwater noise. It has been shown that unsteady momentum fluctuation caused 
by water sprays generates a dipole sound field in the same way as that analysed by 
Ffowcs Williams (1986) for sound production by mixed turbulent flow in aeroacous- 
tics. Radiation from air bubbles in the surface layer has also been examined, and 
it has been found that their effect on sound generation can be completely ignored 
in any event. Bubble motions associated with compressibility in this case can only 
radiate a sound that is essentially of the same order as the inherent turbulence sound, 
while the momentum defects arising from the replacement of water elements by the 
air bubbles are of much less importance than that resulting from the water sprays. 
Sound power output due to splashing water sprays has been evaluated in a model 
of the real ocean, which agrees well with observations from the natural ocean. 
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Appendix 
A model problem is solved to determine the dominant motion of the ocean surface 

beneath which there exists a bubbly mixture layer of thickness E ,  characterized by 
the mean density pm and sound speed c ,  and bounded above by the air of pa and 
ca and below by the water of pw and cw. We examine the response of the three-layered 
fluid system to a harmonic point excitation of strength q located in the bubbly layer 
at  ( O , O ,  b)  of a coordinate system (z, y, z ) ,  b being positive. Letting w > 0 be the 
angular frequency of the source and suppressing the time dependence exp ( - iwt), the 
governing equation in terms of the pressure perturbation p can be written as 

When this equation is used in different layers, an appropriate subscript should be 
added; for example, the equation for the pure water region z G 0 should be with 
reference t o p ,  and cw. The conditions connecting the solutions in different layers are 

and 

which simply state that the pressures and normal velocities on both sides of an 
interface between any two layers are equal. 

The solution to the set of equations (A 1)-(A 3) can be obtained by the method 
of Fourier transformation. The results, representing the pressure field induced by the 
source, can be used to calculate the velocity field, and hence the displacement at the 
surface z = E ,  through the momentum equations. In this way we derive 5 as 

where 

Fd(ku) = PmYm(PaYw+PwYa)  C o s ~ ( Y m E ~ ~ i ~ ~ a ~ w ~ ~ ~ ~ ~ ~ a ~ w ~ s i n ~ ~ m E ~ ~  (A 5, 

and y2 = w2/c2 - k i  with appropriate subscripts and the choice of branches such that 
when real, y > 0 and when purely imaginary Im ( y )  > 0. This ensures that waves are 
all outgoing and finite at infinity. It is a straightforward manner to evaluate the 
ku-integral in (A 4) through the use of the residue theorem, the result being 

where r2 = z2+ y2 and the summation is over all possible zeros of F,(k), k being the 
modulus of ku. This solution can be investigated numerically. It can also be analysed 
asymptotically by letting 

P a C a o ,  L o ,  p m + p w .  
Pw cw c; 
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It can be deduced that 

where y& = w2/c& - k2 and k is simply determined by 

Now, if we include gravity g in the equations (A 1)-(A 3), the function F,(k) can 
be shown to also have a zero near k = w2/g.  This gives rise to surface gravity waves, 
with 

A direct comparison can be made between (A 8) and (A 6) to  decide the dominant 
contribution to y. To this end we choose to work with a typical term in (A 6). This 
is reasonable because the summation is actually over finite terms; the sum of finite 
terms cannot fundamentally increase the order of the individual terms. I n  fact, (A 6) 
contains at most three terms for the ocean-sound problem. It is apparent that (A 6) 
has more than three zeros only if we/c, exceeds yn. For sound of frequency 100 Hz, 
this means that the thickness of the bubbly layer must exceed 1.3 m, a situation that 
rarely happens in the natural ocean. Furthermore, since the depth of the source 
location e - b  is assumed much smaller than the typical wavelength in the ocean, the 
exponential factor in (A 8) is effectively unity and sin [ym(e-b)]  in (A 6) can be 
replaced by y,(~-b). On this account, and approximating ym and k by their 
maximum values, we find the ratio of (A 6) to  (A 8) as 

w ( e - b )  1 (q 
cm l + E W / C ,  wc, 

This is a vanishingly small quantity, since the three factors in i t  are all very much 
smaller than one. Hence we have shown that the main contribution to  C comes from 
gravity waves. 
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